International audienceSingle-walled carbon nanotubes are hollow cylinders, that can grow centimeters long by carbon incorporation at the interface with a catalyst. They display semi-conducting or metallic characteristics, depending on their helicity, that is determined during their growth. To support the quest for a selective synthesis, we develop a thermodynamic model, that relates the tube-catalyst interfacial energies, temperature, and the resulting tube chirality. We show that nanotubes can grow chiral because of the configurational entropy of their nanometer-sized edge, thus explaining experimentally observed temperature evolutions of chiral distributions. Taking the chemical nature of the catalyst into account through interfacial ener...