This paper discusses the introduction of an integrated Posit Processing Unit (PPU) as an alternative to Floating-point Processing Unit (FPU) for Deep Neural Networks (DNNs) in automotive applications. Autonomous Driving tasks are increasingly depending on DNNs. For example, the detection of obstacles by means of object classification needs to be performed in real-time without involving remote computing. To speed up the inference phase of DNNs the CPUs on-board the vehicle should be equipped with co-processors, such as GPUs, which embed specific optimization for DNN tasks. In this work, we review an alternative arithmetic that could be used within the co-processor. We argue that a new representation for floating point numbers called Posit is...