Intraspecific population diversity (specifically, spatial asynchrony of population dynamics) is an essential component of metapopulation stability and persistence in nature. In 2D systems, theory predicts that metapopulation stability should increase with ecosystem size (or habitat network size): Larger ecosystems will harbor more diverse subpopulations with more stable aggregate dynamics. However, current theories developed in simplified landscapes may be inadequate to predict emergent properties of branching ecosystems, an overlooked but widespread habitat geometry. Here, we combine theory and analyses of a unique long-term dataset to show that a scale-invariant characteristic of fractal river networks, branching complexity (measured as b...