The notion of an elliptic plane given 1975 by K. Sörensen [S1] will be extended to the notion of a "generalized elliptic space". Each such elliptic space is derivable from a generalized euclidean space in the sense of H.-J. Kroll and K. Sörensen [KS]. For the case that the euclidean resp. elliptic space has the dimension 3 resp. 2 there is a one to one correspondence between these structures and quaternion fields. Each quaternion field of characteristic ≠ 2 defines in a natural way a 4-dimensional euclidean and a 3-dimensional elliptic space. But, in general, we do not obtain in this way all 4- resp. 3-dimensional geometries. The geometries derivable from quaternion fields will be characterized. Both of these two classes of geometries are p...