Graduation date: 1978This paper compares three classes of algorithms for finding\ud Hamiltonian circuits in graphs. Two of the classes are exhaustive\ud search procedures and this study finds them to have an exponential\ud dependence on the size of the graph. The third class of algorithms,\ud based on Warnsdorff's rule, is found to be less dependent on the\ud size of the graph but restricted to finding only a single circuit.\ud The effect of density and regularity of the characteristic performance\ud of the algorithms is shown to be minimal
We examine powers of Hamiltonian paths and cycles as well as Hamiltonian (power) completion problems...
An eulerian subgraph of a graph is called a circuit. As shown by Harary and Nash-Williams, the exist...
Finding a Hamiltonian cycle in a graph is used for solving major problems in areas such as graph the...
The paper suggests an exhaustive search algorithm for finding Hamiltonian circuits in an undirected...
Dirac\u27s famous theorems states that If G is a graph of order () 3 such that the minimum degree ()...
Abstract. Let us fix a function f(n) = o(n lnn) and reals 0 ≤ α < β ≤ 1. We present a polynomial...
In this work we study the complextity of Thomasson's algorithm over a special class of cubic graphs....
The results presented in the paper are threefold. Firstly, a new class of reduced-by-matching direct...
We analyze the performance of a simple randomized algorithm for finding long cycles and 2-factors in...
Bertossi and Bonuccelli [2] proved that the Hamiltonian Circuit problem in NP-Complete even when the...
AbstractSmith's theorem states that in a cubic graph the number of Hamiltonian cycles containing a g...
AbstractIn this paper a polynomial algorithm called the Minram algorithm is presented which finds a ...
to A theoretically most efficient search algorithm is presented which uses an exhaustive search to f...
Dirac's theorem (1952) is a classical result of graph theory, stating that an $n$-vertex graph ($n \...
We analyze the performance of a simple randomized algorithm for finding 2-factors in directed Hamilt...
We examine powers of Hamiltonian paths and cycles as well as Hamiltonian (power) completion problems...
An eulerian subgraph of a graph is called a circuit. As shown by Harary and Nash-Williams, the exist...
Finding a Hamiltonian cycle in a graph is used for solving major problems in areas such as graph the...
The paper suggests an exhaustive search algorithm for finding Hamiltonian circuits in an undirected...
Dirac\u27s famous theorems states that If G is a graph of order () 3 such that the minimum degree ()...
Abstract. Let us fix a function f(n) = o(n lnn) and reals 0 ≤ α < β ≤ 1. We present a polynomial...
In this work we study the complextity of Thomasson's algorithm over a special class of cubic graphs....
The results presented in the paper are threefold. Firstly, a new class of reduced-by-matching direct...
We analyze the performance of a simple randomized algorithm for finding long cycles and 2-factors in...
Bertossi and Bonuccelli [2] proved that the Hamiltonian Circuit problem in NP-Complete even when the...
AbstractSmith's theorem states that in a cubic graph the number of Hamiltonian cycles containing a g...
AbstractIn this paper a polynomial algorithm called the Minram algorithm is presented which finds a ...
to A theoretically most efficient search algorithm is presented which uses an exhaustive search to f...
Dirac's theorem (1952) is a classical result of graph theory, stating that an $n$-vertex graph ($n \...
We analyze the performance of a simple randomized algorithm for finding 2-factors in directed Hamilt...
We examine powers of Hamiltonian paths and cycles as well as Hamiltonian (power) completion problems...
An eulerian subgraph of a graph is called a circuit. As shown by Harary and Nash-Williams, the exist...
Finding a Hamiltonian cycle in a graph is used for solving major problems in areas such as graph the...