Micron-scale swimmers move in the realm of negligible inertia, dominated by viscous drag forces. Actuation of artificial micro-robotic swimmers for various biomedical applications is inspired by natural propulsion mechanisms of swimming microorganisms such as bacteria and sperm cells, which perform periodic strokes by waving a slender tail. Finding energy-optimal swimming strokes is a key question with high relevance for both biological and robotic microswimmers. In this paper, we formulate the leading-order dynamics of a slender multi-link microswimmer assuming small-amplitude undulations about its straightened configuration. The energy-optimal stroke for achieving a given displacement at a given period time is obtained as the eigenvalue s...