The purpose of this thesis was to implement, analyze, and possibly expand a Bayesian inference method related to approximate Bayesian computation (ABC). This method was initially suggested by the supervisor and was given the working name approximate Bayesian computation with sequential surrogate likelihoods (ABC-SSL). The underlying idea for the method was to replace ABC distances with predicted distances obtained using some regression technique, thus circumventing generation of synthetic datasets from the Bayesian model. These predictions would then be improved in a sequential manner, leading to a significant decrease of computational cost for parameter inference. The literature on ABC was studied in search of similar techniques with the i...