We define a model of size-S R-way branching programs with oracles that can make up to S distinct oracle queries over all of their possible inputs, and generalize a lower bound proof strategy of Beame [SICOMP 1991] to apply in the case of random oracles. Through a series of succinct reductions, we prove that the following problems require randomized algorithms where the product of running time and space usage must be Omega(n^2/poly(log n)) to obtain correct answers with constant nonzero probability, even for algorithms with constant-time access to a uniform random oracle (i.e., a uniform random hash function): - Given an unordered list L of n elements from [n] (possibly with repeated elements), output [n]-L. - Counting satisfying assignmen...