We initiate the study of quantum races, games where two or more quantum computers compete to solve a computational problem. While the problem of dueling algorithms has been studied for classical deterministic algorithms [Immorlica et al., 2011], the quantum case presents additional sources of uncertainty for the players. The foremost among these is that players do not know if they have solved the problem until they measure their quantum state. This question of "when to measure?" presents a very interesting strategic problem. We develop a game-theoretic model of a multiplayer quantum race, and find an approximate Nash equilibrium where all players play the same strategy. In the two-party case, we further show that this strategy is nearly opt...