Intermittent demand patterns are characterised by infrequent demand arrivals coupled with variable demand sizes. Such patterns prevail in many industrial applications, including IT, automotive, aerospace and military. An intuitively appealing strategy to deal with such patterns from a forecasting perspective is to aggregate demand in lower-frequency ‘time buckets’ thereby reducing the presence of zero observations. However, such aggregation may result in losing useful information, as the frequency of observations is reduced. In this paper, we explore the effects of aggregation by investigating 5,000 stock keeping units from the Royal Air Force (UK). We are also concerned with the empirical determination of an optimum aggregation level as...