Andre used Hodge-theoretic methods to show that in a smooth proper family X → B of varieties over an algebraically closed field k of characteristic zero, there exists a closed fiber having the same Picard number as the geometric generic fiber, even if k is countable. We give a completely different approach to André’s theorem, which also proves the following refinement: in a family of varieties with good reduction at p, the locus on the base where the Picard number jumps is p-adically nowhere dense. Our proof uses the “p-adic Lefschetz (1,1)-theorem” of Berthelot and Ogus, combined with an analysis of p-adic power series. We prove analogous statements for cycles of higher codimension, assuming a p-adic analogue of the variational Hodge conje...