Matrices coming from elliptic partial differential equations have been shown to have a low-rank property: well-defined off-diagonal blocks of their Schur complements can be approximated by low-rank products, and this property can be efficiently exploited in multifrontal solvers to provide a substantial reduction of their complexity. Among the possible low-rank formats, the block low- rank (BLR) format is easy to use in a general purpose multifrontal solver and has been shown to provide significant gains compared to full-rank on practical applications. However, unlike hierarchical formats, such as H and HSS, its theoretical complexity was unknown. In this paper, we extend the theoretical work done on hierarchical matrices in order to ...