In this thesis, we focus on a method for detecting abrupt changes in a sequence of independent observations belonging to an arbitrary set on which a positive semidefinite kernel is defined. That method, kernel changepoint detection, is a kernelized version of a penalized least-squares procedure. Our main contribution is to show that, for any kernel satisfying some reasonably mild hypotheses, this procedure outputs a segmentation close to the true segmentation with high probability. This result is obtained under a bounded assumption on the kernel for a linear penalty and for another penalty function, coming from model selection.The proofs rely on a concentration result for bounded random variables in Hilbert spaces and we prove a less powerf...