International audienceIn this paper, we study context-aware methods to localize tamperings in images from social media. The problem is defined as a comparison between image pairs: an near-duplicate image retrieved from the network and a tampered version. We propose a method based on local features matching, followed by a kernel density estimation, that we compare to recent similar approaches. The proposed approaches are evaluated on two dedicated datasets containing a variety of representative tamperings in images from social media, with difficult examples. Context-aware methods are proven to be better than blind image forensics approach. However, the evaluation allows to analyze the strengths and weaknesses of the contextual-based methods ...