International audienceAlthough Cloud computing techniques have reduced the total cost of ownership thanks to virtualization, the average usage of resources (e.g., CPU, RAM, Network, I/O) remains low. To address such issue, one may sell unused resources. Such a solution requires the Cloud provider to determine the resources available and estimate their future use to provide availability guarantees. This paper proposes a technique that uses machine learning algorithms (Random Forest, Gradient Boosting Decision Tree, and Long Short Term Memory) to forecast 24-hour of available resources at the host level. Our technique relies on the use of quantile regression to provide a flexible trade-off between the potential amount of resources to reclaim ...