Quantum walks have been very useful in developing search algorithms in quantum information, in particular for devising of spatial search algorithms. However, the construction of continuous-time quantum search algorithms in two-dimensional lattices has proved difficult, requiring additional degrees of freedom. Here, we demonstrate that a continuous-time quantum walk search is possible in two dimensions by changing the search topology to a graphene lattice, utilizing the Dirac point in the energy spectrum. This is made possible by making a change to standard methods of marking a particular site in the lattice. Various ways of marking a site are shown to result in successful search protocols. We further establish that the search can be adapted...