This thesis addresses the topic of decision making under uncertainty, with particular focus on financial markets. The aim of this research is to support improved decisions in practice, and related to this, to advance our understanding of financial markets. Stochastic optimization provides the tools to determine optimal decisions in uncertain environments, and the optimality conditions of these models produce insights into how financial markets work. To be more concrete, a great deal of financial theory is based on optimality conditions derived from stochastic optimization models. Therefore, an important part of the development of financial theory is to study stochastic optimization models that step-by-step better capture the essence of real...