The thesis is focused on the study of collective effects in a 50 MeV electron storage ring, ThomX, in the absence of synchrotron radiation damping and of longitudinal matching. This thesis is divided in two distinct parts. The first part corresponds to the design of the impedance model (geometric and resistive wakefields, coherent synchrotron radiation) of the storage ring in order to simulate the beam dynamics. The geometric impedance model of the storage ring was obtained via simulation of the individual elements and was checked using wire measurements on prototypes. The coherent synchrotron radiation was simulated taking into account a rectangular vacuum chamber. Beam dynamics simulations, from the RF gun cathode to the storage ring, inc...