Robust statistics is a branch of statistics dealing with the analysis of data containing contaminated observations. The robustness of an estimator is measured notably by means of the breakdown point. High-breakdown point estimators are usually defined as global minima of a non-convex scale of the errors, hence their computation isa challenging global optimization problem. The objective of this dissertation is to investigate the potential contributions of modern global optimization methods to this class of problems.The first part of this thesis is devoted to the tau -estimator for linear regression, which is defined as a global minimum of a nonconvex differentiable function. We investigate the impact of incorporating clustering techniques an...
Cette thèse se consacre à une analyse rigoureuse des algorithmes d'optimisation globale équentielle....
Ce travail de thèse s’intéresse au problème d’optimisation séquentielle d’une fonction inconnue défi...
In this work, we propose a meta algorithm that can solve a multivariate global optimization problem ...
Robust statistics is a branch of statistics dealing with the analysis of data containing contaminate...
Artículo de publicación ISIThis paper deals with the problem of finding the globally optimal subset ...
A stochastic method for bound constrained global optimization is described. The method can be appli...
This thesis introduces a globalization strategy for approximating global minima of zero-residual lea...
Global optimization problems occur in many fields i ncluding mathematics, s tatistics, computer sci...
This dissertation is concerned with developing new statistical techniques for nonlinear optimization...
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Chemical Engineering, 2014.This...
Optimization problems in engineering often have nonconvex objectives and constraints and require glo...
A range of procedures in both robustness and diagnostics require optimisation of a target functional...
This thesis looks at some theoretical and practical aspects of global optimization - as we shall see...
Depuis une vingtaine d’années, la résolution de problèmes d’optimisation globale non convexes avec c...
Convexity is an essential characteristic in optimization. In reality, many optimization problems are...
Cette thèse se consacre à une analyse rigoureuse des algorithmes d'optimisation globale équentielle....
Ce travail de thèse s’intéresse au problème d’optimisation séquentielle d’une fonction inconnue défi...
In this work, we propose a meta algorithm that can solve a multivariate global optimization problem ...
Robust statistics is a branch of statistics dealing with the analysis of data containing contaminate...
Artículo de publicación ISIThis paper deals with the problem of finding the globally optimal subset ...
A stochastic method for bound constrained global optimization is described. The method can be appli...
This thesis introduces a globalization strategy for approximating global minima of zero-residual lea...
Global optimization problems occur in many fields i ncluding mathematics, s tatistics, computer sci...
This dissertation is concerned with developing new statistical techniques for nonlinear optimization...
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Chemical Engineering, 2014.This...
Optimization problems in engineering often have nonconvex objectives and constraints and require glo...
A range of procedures in both robustness and diagnostics require optimisation of a target functional...
This thesis looks at some theoretical and practical aspects of global optimization - as we shall see...
Depuis une vingtaine d’années, la résolution de problèmes d’optimisation globale non convexes avec c...
Convexity is an essential characteristic in optimization. In reality, many optimization problems are...
Cette thèse se consacre à une analyse rigoureuse des algorithmes d'optimisation globale équentielle....
Ce travail de thèse s’intéresse au problème d’optimisation séquentielle d’une fonction inconnue défi...
In this work, we propose a meta algorithm that can solve a multivariate global optimization problem ...