In Model-Driven Software Development, models are automatically processed to support the creation, build, and execution of systems. A large variety of dedicated model-transformation languages exists, promising to efficiently realize the automated processing of models. To investigate the actual benefit of using such specialized languages, we performed a large-scale controlled experiment in which over 78 subjects solve 231 individual tasks using three languages. The experiment sheds light on commonalities and differences between model transformation languages (ATL, QVT-O) and on benefits of using them in common development tasks (comprehension, change, and creation) against a modern general-purpose language (Xtend). Our results show no statist...