We consider a stochastic scheduling problem with both hard and soft tasks on a single machine. Each task is described by a discrete probability distribution over possible execution times, and possible inter-arrival times of the job, and a fixed deadline. Soft tasks also carry a penalty cost to be paid when they miss a deadline. We ask to compute an online and non-clairvoyant scheduler (i.e. one that must take decisions without knowing the future evolution of the system) that is safe and efficient. Safety imposes that deadline of hard tasks are never violated while efficient means that we want to minimise the mean cost of missing deadlines by soft tasks. First, we show that the dynamics of such a system can be modelled as a finite Markov Dec...