In this thesis we study some non-equilibrium aspects of an interacting, massive scalar field theory treated perturbatively. This is done analysing some properties of the interacting KMS state constructed by Fredenhagen and Lindner [FL14] in the framework of perturbative Algebraic Quantum Field Theory. In the first part we treat the stability of KMS states, namely we check whether the free state evolved with the interacting dynamics converges to the interacting state. In the meantime we also analyse the return to equilibrium, that is the analogous property with the role of the free and interacting quantities exchanged. We prove that those two properties hold if the perturbation potential is of spatial compact support and that they fail other...