A switched Nonlinear Model Predictive Control (NMPC) strategy for time efficient energy control of railway vehicles, while fulfilling constraints on velocity, journey time and driving style in a collaborative fashion (collaborative eco-drive) is proposed. More specifically, the train dynamics are modeled as discrete, switched and nonlinear, while the optimization variable is the handle position which modulates the available traction/braking force and has to belong to a set of discrete values and/or operating modes, which the human driver is able to implement. Hence the aim is to choose the optimal handle position that minimizes the cost, is implementable by the driver and also fulfills the eco-driving objective, such that the driving style ...