In modern system-on-chip architectures, specialized accelerators are increasingly used to improve performance and energy efficiency. The growing complexity of these systems requires the use of system-level design methodologies featuring high-level synthesis (HLS) for generating these components efficiently. Existing HLS tools, however, have limited support for the system-level optimization of memory elements, which typically occupy most of the accelerator area. We present a complete methodology for designing the private local memories (PLMs) of multiple accelerators. Based on the memory requirements of each accelerator, our methodology automatically determines an area-efficient architecture for the PLMs to guarantee performance and reduce t...