In mean-risk portfolio optimization, it is typically assumed that the assets follow a known distribution P 0, which is estimated from observed data. Aiming at an investment strategy which is robust against possible misspecification of P 0, the portfolio selection problem is solved with respect to the worst-case distribution within a Wasserstein-neighborhood of P 0. We review tractable formulations of the portfolio selection problem under model ambiguity, as it is called in the literature. For instance, it is known that high model ambiguity leads to equally-weighted portfolio diversification. However, it often happens that the marginal distributions of the assets can be estimated with high accuracy, whereas the dependence structure between t...