Tato práce se zabývá klasifikací objektů v obraze s použitím hlubokých neuronových sítí. Jako algoritmus pro klasifikaci byla zvolena segmentace celé scény pracující na video sekvencích a využívající informace mezi dvěma snímkami videa. Pro tuto úlohu bylo použito extrahování informací pomocí optického toku, na základě kterého byly dále warpovány aktivační mapy vrstev neuronových sítí. Dvě architektury neuronových sítí byly upraveny pro práci s videem, na kterých byly následně provedeny experimenty. Výsledky experimentů ukazují, že použití videa umožňuje zlepšit přesnost (IoU) vůči stejné architektuře pracující s obrázky.This paper deals with classifying objects using deep neural networks. Whole scene segmentation was used as main algorithm...