First Accurate Normalization of the β-delayed α Decay of 16N and Implications for the 12C(α,γ)16O Astrophysical Reaction Rate

  • Kirsebom, O. S.
  • Tengblad, O.
  • Lica, R.
  • Munch, M.
  • Riisager, K.
  • Fynbo, H. O. U.
  • Borge, M. J. G.
  • Madurga, M.
  • Marroquin, I.
  • Andreyev, A. N.
  • Berry, T. A.
  • Christensen, E. R.
  • Fernández, P. Díaz
  • Doherty, D. T.
  • Van Duppen, P.
  • Fraile, L. M.
  • Gallardo, M. C.
  • Greenlees, Paul
  • Harkness-Brennan, L. J.
  • Hubbard, N.
  • Huyse, M.
  • Jensen, J. H.
  • Johansson, H.
  • Jonson, B.
  • Judson, D. S.
  • Konki, Joonas
  • Lazarus, I.
  • Lund, M. V.
  • Marginean, N.
  • Marginean, R.
  • Perea, A.
  • Mihai, C.
  • Negret, A.
  • Page, R. D.
  • Pucknell, V.
  • Rahkila, Panu
  • Sorlin, O.
  • Sotty, C.
  • Swartz, J. A.
  • Sørensen, H. B.
  • Törnqvist, H.
  • Vedia, V.
  • Warr, N.
  • De Witte, H.
Publication date
October 2018
Publisher
American Physical Society (APS)

Abstract

The 12Cðα; γÞ16O reaction plays a central role in astrophysics, but its cross section at energies relevant for astrophysical applications is only poorly constrained by laboratory data. The reduced α width, γ11, of the bound 1− level in 16O is particularly important to determine the cross section. The magnitude of γ11 is determined via sub-Coulomb α-transfer reactions or the β-delayed α decay of 16N, but the latter approach is presently hampered by the lack of sufficiently precise data on the β-decay branching ratios. Here we report improved branching ratios for the bound 1− level [bβ;11 ¼ ð5.02 0.10Þ × 10−2] and for β-delayed α emission [bβα ¼ ð1.59 0.06Þ × 10−5]. Our value for bβα is 33% larger than previously held, leading to a s...

Extracted data

We use cookies to provide a better user experience.