Aims Mechanisms of subsoil carbon sequestration from deep-rooted plants are elusive, but may contribute to climate change mitigation. This study addressed the role of root chemistry on carbon mineralization and microbiology in a temperate agricultural subsoil (60 and 300 cm depth)compared to topsoil (20 cm depth). Methods Roots from different plant species were chemically characterized and root-induced CO2 production was measured in controlled soil incubations (20 weeks). Total carbon losses, β-glucosidase activity, carbon substrate utilization, and bacterial gene copy numbers were determined. After 20 weeks, resultant carbon mineralization responses to mineral nitrogen (N) were tested. Results Root-induced carbon losses were significantl...