Object detection and tracking are active and important research areas in computer vision as well as neuroscience. Of particular interest is the detection and tracking of small, poorly lit, deformable objects in the presence of sensor noise, and large changes in background and foreground illumination. Such conditions are frequently encountered when an animal moves in its natural environment, or in an experimental arena. The problems are exacerbated with the use of high-speed video cameras as the exposure time for high-speed cameras is limited by the frame rate, which limits the SNR. In this paper we present a set of simple algorithms for detecting and tracking multiple, small, poorly lit, deformable objects in environments that feature drast...