Solar-like stars are believed to generate magnetic fields in their convective envelope through dynamo processes. Magnetic energy is injected in their extended atmosphere, the corona, which is heated up to few million Kelvin. The outward pressure gradient drives a magnetized stellar wind that induces a rotational braking on the star.We first focus on the consequences of this magnetized outflow on stellar rotation. Thanks to 2.5D MHD wind simulations, we quantify the influence of complex topologies of the magnetic field on the efficiency of the braking. We derive a general formulation that accounts for arbitrary complex magnetic topologies using the open magnetic flux. We propose a way to estimate the open magnetic flux for solar-like stars t...