The purpose of this thesis is to present several results on the restoration of uniqueness and selection of equilibria when uniqueness fails in mean field games. The theory of mean field games was initiated in the 2000s by two groups of researchers, Lasry and Lions in France, and Huang, Caines, and Malhamé in Canada. The aim of this theory is to describe the Nash equilibria in stochastic differential games involving a large number of players interacting with each other through their common empirical measure, under sufficient symmetry hypothesis. If the existence of equilibria in mean field games is now well understood, uniqueness remains known in a very limited number of cases. In this respect, the most well-known condition is the monotony h...