Solid-solid interface mechanism understanding of composite inclusions, when extended to solid-liquid interface design of composite using Eshelby theory, indicates a possibility of decreasing effective stiffness with increasing liquid inclusion in a solid matrix. In contrast, experimental evidence in the current paper suggests high stiffness and enhanced dynamic energy absorption in a soft polymer (polydimethylsiloxane) with high bulk modulus liquid inclusions (gallium). The basic deformation mechanism is governed by hydrostatic stress causing shape change of the liquid inclusion in large deformation regime and strain hardening of a soft polymer matrix. In addition, dynamic viscoelasticity and fluid motion also play a significant role. These...