Modern problems arising in many domains are driving a need for more capable, state-of-the-art optimization tools. A sharp focus on performance and accuracy has appeared, for example, in science and engineering applications. In particular, we have seen a growth in studies related to Polynomial Optimization: a field with beautiful and deep theory, offering flexibility for modeling and high impact in diverse areas. The understanding of structural aspects of the feasible sets in Polynomial Optimization, mainly studied in Real Algebraic Geometry, has a long tradition in Mathematics and it has recently acquired increased computational maturity, opening the gate for new Optimization methodologies to be developed. The celebrated hierarchies d...