This thesis comprises two parts covering distinct topics in algebraic geometry. In Part I, we construct the first examples of regular del Pezzo surfaces for which the first cohomology group of the structure sheaf is nonzero. Such surfaces, which only exist over imperfect fields, arise as generic fibres of fibrations of singular del Pezzo surfaces in positive characteristic whose total spaces are smooth, and their study is motivated by the minimal model program. We also find a restriction on the integer pairs that are possible as the irregularity (that is, the dimension of the first cohomology group of the structure sheaf) and anti-canonical degree of regular del Pezzo surfaces with positive irregularity. In Part II, we consider a connected ...