This paper presents the theoretical foundation of a new type of constraint-based grammars, Lexicalized Well-Founded Grammars, which are adequate for modeling human language and are learnable. These features make the grammars suitable for developing robust and scalable natural language understanding systems. Our grammars capture both syntax and semantics and have two types of constraints at the rule level: one for semantic composition and one for ontology-based semantic interpretation. We prove that these grammars can always be learned from a small set of semantically annotated, ordered representative examples, using a relational learning algorithm. We introduce a new semantic representation for natural language, which is suitable for an ont...