The multi-armed bandit (MAB) problem is a mathematical formulation of the exploration-exploitation trade-off inherent to reinforcement learning, in which the learner chooses an action (symbolized by an arm) from a set of available actions in a sequence of trials in order to maximize their reward. In the classical MAB problem, the learner receives absolute bandit feedback i.e. it receives as feedback the reward of the arm it selects. In many practical situations however, different kind of feedback is more readily available. In this thesis, we study two of such kinds of feedbacks, namely, relative feedback and corrupt feedback.The main practical motivation behind relative feedback arises from the task of online ranker evaluation. This task in...
International audienceRecently, the COMbinatorial Multi-Armed Bandits (COMMAB) problem has arisen as...
International audienceRecently, the COMbinatorial Multi-Armed Bandits (COMMAB) problem has arisen as...
This thesis considers the multi-armed bandit (MAB) problem, both the traditional bandit feedback and...
Dans cette thèse, nous étudions des problèmes de prise de décisions séquentielles dans lesquels, pou...
Dans cette thèse, nous étudions des problèmes de prise de décisions séquentielles dans lesquels, pou...
Dans cette thèse, nous étudions des problèmes de prise de décisions séquentielles dans lesquels, pou...
Dans cette thèse, nous étudions des problèmes de prise de décisions séquentielles dans lesquels, pou...
In this thesis we address the multi-armed bandit (MAB) problem with stochastic rewards and correlate...
In this thesis we address the multi-armed bandit (MAB) problem with stochastic rewards and correlate...
In this thesis we address the multi-armed bandit (MAB) problem with stochastic rewards and correlate...
In this thesis we address the multi-armed bandit (MAB) problem with stochastic rewards and correlate...
In this thesis we address the multi-armed bandit (MAB) problem with stochastic rewards and correlate...
International audienceMulti-player Multi-Armed Bandits (MAB) have been extensively studied in the li...
International audienceMulti-player Multi-Armed Bandits (MAB) have been extensively studied in the li...
International audienceRecently, the COMbinatorial Multi-Armed Bandits (COMMAB) problem has arisen as...
International audienceRecently, the COMbinatorial Multi-Armed Bandits (COMMAB) problem has arisen as...
International audienceRecently, the COMbinatorial Multi-Armed Bandits (COMMAB) problem has arisen as...
This thesis considers the multi-armed bandit (MAB) problem, both the traditional bandit feedback and...
Dans cette thèse, nous étudions des problèmes de prise de décisions séquentielles dans lesquels, pou...
Dans cette thèse, nous étudions des problèmes de prise de décisions séquentielles dans lesquels, pou...
Dans cette thèse, nous étudions des problèmes de prise de décisions séquentielles dans lesquels, pou...
Dans cette thèse, nous étudions des problèmes de prise de décisions séquentielles dans lesquels, pou...
In this thesis we address the multi-armed bandit (MAB) problem with stochastic rewards and correlate...
In this thesis we address the multi-armed bandit (MAB) problem with stochastic rewards and correlate...
In this thesis we address the multi-armed bandit (MAB) problem with stochastic rewards and correlate...
In this thesis we address the multi-armed bandit (MAB) problem with stochastic rewards and correlate...
In this thesis we address the multi-armed bandit (MAB) problem with stochastic rewards and correlate...
International audienceMulti-player Multi-Armed Bandits (MAB) have been extensively studied in the li...
International audienceMulti-player Multi-Armed Bandits (MAB) have been extensively studied in the li...
International audienceRecently, the COMbinatorial Multi-Armed Bandits (COMMAB) problem has arisen as...
International audienceRecently, the COMbinatorial Multi-Armed Bandits (COMMAB) problem has arisen as...
International audienceRecently, the COMbinatorial Multi-Armed Bandits (COMMAB) problem has arisen as...
This thesis considers the multi-armed bandit (MAB) problem, both the traditional bandit feedback and...