In many applications, it is crucial that a robot or vehicle localizes itself within the world especially for autonomous navigation and driving. The goal of this thesis is to improve place recognition performance for visual localization in changing environment. The approach is as follows: in off-line phase, geo-referenced images of each location are acquired, features are extracted and saved. While in the on-line phase, the vehicle localizes itself by identifying a previously-visited location through image or sequence retrieving. However, visual localization is challenging due to drastic appearance and illumination changes caused by weather conditions or seasonal changing. This thesis addresses the challenge of improving place recognition te...