International audienceHelium diffusion in U–Th-rich minerals, especially apatite, is considered as strongly impacted by damage, even at low U–Th content. To get direct evidence and better understand the impact of damage on He diffusion, we conducted a study on vacancy damage in apatite, at nanometric to atomic scales, using different methodologies. Firstly, damage was created on apatite crystals by He implantation at different He fluences ranging from 2 × 1015 to 1 × 1017 He/cm2, corresponding to atomic displacement ranging from 12 to more than 100% of the total structure in the first 200 nm below the surface. Transmission Electron Microscopy (TEM) was used to image the damage structure, for the lowest He fluence. TEM images present no visi...