Many computational problems arising in, for instance, artificial intelligence can be realized as infinite-domain constraint satisfaction problems (CSPs) based on partition schemes: a set of pairwise disjoint binary relations (containing the equality relation) whose union spans the underlying domain and which is closed under converse. We first consider partition schemes that contain a strict partial order and where the constraint language contains all unions of the basic relations; such CSPs are frequently occurring in e.g. temporal and spatial reasoning. We identify three properties of such orders which, when combined, are sufficient to establish NP-hardness of the CSP. This result explains, in a uniform way, many existing hardness results ...