In this thesis, we use multitype Galton-Watson branching processes in random environments as individual-based models for the evolution of structured populations with both demographic stochasticity and environmental stochasticity, and investigate the phenotype allocation problem. We explore a variational characterization for the stochastic evolution of a structured population modeled by a multitype Galton-Watson branching process. When the population under consideration is large and the time scale is fast, we deduce the continuous approximation for multitype Markov branching processes in random environments. Many problems in evolutionary biology involve the allocation of some limited resource among several investments. It is often of intere...