We study inverse optimization problems, wherein the goal is to map given solutions to an underlying optimization problem to a cost vector for which the given solutions are the (unique) optimal solutions. Inverse optimization problems find diverse applications and have been widely studied. A prominent problem in this field is the inverse shortest path (ISP) problem [D. Burton and Ph.L. Toint, 1992; W. Ben-Ameur and E. Gourdin, 2004; A. Bley, 2007], which finds applications in shortest-path routing protocols used in telecommunications. Here we seek a cost vector that is positive, integral, induces a set of given paths as the unique shortest paths, and has minimum l_infty norm. Despite being extensively studied, very few algorithmic results ar...