Smart surveillance systems become more meaningful if they both grow in reliability and robustness, while simultaneously offering a higher semantic level of understanding. To achieve a higher level of semantic scene understanding, the objects and their actions have to be interpreted in the given context, so that the extraction of contextual information is required. This chapter explores several techniques for extracting the contextual information such as spatial, motion, depth and co-occurrence, depending on applications. Afterwards, the chapter provides specific case studies to evaluate the usefulness of context information, based on: (1) region labeling of the surroundings of objects, (2) motion analysis of the water for moving ships, (3) ...