Model-based optimization of the water-flooding process in oil reservoirs suffers from high levels of uncertainty arising from strongly varying economic conditions and limited knowledge of the reservoir model parameters. To handle uncertainty, diverse robust optimization approaches that use an ensemble of uncertain parameter realizations (i.e., scenarios), have been adopted. However, in scenario-based approaches, the effect of considering a finite set of scenarios on the constraint violation and/or the performance degradation with respect to the unseen scenarios have not been studied. In this paper, we provide probabilistic guarantees on the worst-case performance degradation of a scenario-based solution. By using statistical learning, we an...