This paper discusses how real-life statistical analysis/inference deviates from ideal environments. More specifically, there often exist models that have equal statistical power as the actual data-generating model, given only limited information and information processing/computation capacity. This means that misspecification actually has two problems: first with misspecification around the model we wish to find, and that an actual data-generating model may never be discovered. Thus the role information - this includes data - plays on statistical inference needs to be considered more heavily than often done. A game defining pseudo-equivalent models is presented in this light. This limited information nature effectively casts a statistical a...