International audienceEarth-based gravitational-wave detectors will be limited by quantum noise in a large part of their spectrum. The most promising technique to achieve a broadband reduction of such noise is the injection of a frequency-dependent squeezed vacuum state from the output port of the detector, with the squeeze angle rotated by the reflection off a Fabry-Perot filter cavity. One of the most important parameters limiting the squeezing performance is represented by the optical losses of the filter cavity. We report here the operation of a 300 m filter cavity prototype installed at the National Astronomical Observatory of Japan. The cavity is designed to obtain a rotation of the squeeze angle below 100 Hz. After achieving the reso...