Den Mittelpunkt des folgenden Diskurses bildet ein Projekt des Neukantianers Hermann Cohen (1842-1918), das dieser unter dem Titel „Das Prinzip der Infinitesimal-Methode und seine Geschichte“ 1883 präsentiert hat. Sein Vorhaben, die Fruchtbarkeit der infinitesimalen Größe in der Mathematik und den Naturwissenschaften auch für die Philosophie, vor allem die Kantische Transzendentalphilosophie, nutzbar zu machen, erwies sich zu damaliger Zeit als wenig populär. Infolge von Schwierigkeiten mit der Interpretation seiner komplizierten Schrift und heftiger Kritik führender Mathematiker blieb sein Werk weitgehend unbeachtet. Anhand eines Blickes auf den Gang der Wissenschaft der Infinitesimal-Mathematik soll diese Kritik im Folgenden entkräftet u...
"The definitive clarification of the nature of the infinite has become necessary, not merely for the...
In 1982 Joe Dauben explored the implications of Abraham Robinson’s invention of non-standard analysi...
The mathematician Georg Cantor strongly believed in the existence of actually infinite numbers and s...
The goal of this paper is to investigate the relation between Cohen’s approach to differential calcu...
This article analyzes two works of the founder of the Marburg Neokantianism of Hermann Cohen, in whi...
In Bertrand Russell's 1903 Principles of Mathematics, he offers an apparently devastating criticism ...
We seek to elucidate the philosophical context in which one of the most important conceptual transfo...
En este trabajo nos proponemos analizar la relación que Hermann Cohen establece entre el conocimient...
This paper offers an introduction to Hermann Cohen’s Das Princip der Infinitesimal-Methode (1883), a...
Felix Klein and Abraham Fraenkel each formulated a criterion for a theory of infinitesimals to be su...
In his 1887's Mitteilungen zur Lehre von Transfiniten, Cantor seeks to prove inconsistency of infini...
La recensione di Das Prinzip der Infinitesimal-Methode und seine Geschichte, opera pubblicata da Her...
Felix Klein and Abraham Fraenkel each formulated a criterion for a theory of infinitesimals to be su...
International audienceIt has long been thought that Leibniz’s conceptions of infinitesimals were a l...
"The definitive clarification of the nature of the infinite has become necessary, not merely for the...
In 1982 Joe Dauben explored the implications of Abraham Robinson’s invention of non-standard analysi...
The mathematician Georg Cantor strongly believed in the existence of actually infinite numbers and s...
The goal of this paper is to investigate the relation between Cohen’s approach to differential calcu...
This article analyzes two works of the founder of the Marburg Neokantianism of Hermann Cohen, in whi...
In Bertrand Russell's 1903 Principles of Mathematics, he offers an apparently devastating criticism ...
We seek to elucidate the philosophical context in which one of the most important conceptual transfo...
En este trabajo nos proponemos analizar la relación que Hermann Cohen establece entre el conocimient...
This paper offers an introduction to Hermann Cohen’s Das Princip der Infinitesimal-Methode (1883), a...
Felix Klein and Abraham Fraenkel each formulated a criterion for a theory of infinitesimals to be su...
In his 1887's Mitteilungen zur Lehre von Transfiniten, Cantor seeks to prove inconsistency of infini...
La recensione di Das Prinzip der Infinitesimal-Methode und seine Geschichte, opera pubblicata da Her...
Felix Klein and Abraham Fraenkel each formulated a criterion for a theory of infinitesimals to be su...
International audienceIt has long been thought that Leibniz’s conceptions of infinitesimals were a l...
"The definitive clarification of the nature of the infinite has become necessary, not merely for the...
In 1982 Joe Dauben explored the implications of Abraham Robinson’s invention of non-standard analysi...
The mathematician Georg Cantor strongly believed in the existence of actually infinite numbers and s...