Scrambling is a process by which the state of a quantum system is effectively randomized due to the global entanglement that “hides” initially localized quantum information. Closely related notions include quantum chaos and thermalization. Such phenomena play key roles in the study of quantum gravity, many-body physics, quantum statistical mechanics, quantum information etc. Scrambling can exhibit different complexities depending on the degree of randomness it produces. For example, notice that the complete randomization implies scrambling, but the converse does not hold; in fact, there is a significant complexity gap between them. In this work, we lay the mathematical foundations of studying randomness complexities beyond scrambling by ent...