Mwebaze E, Schneider P, Schleif F-M, Haase S, Villmann T, Biehl M. Divergence based Learning Vector Quantization. In: Proceedings of ESANN 2010. In Press
Fischer L, Hammer B, Wersing H. Rejection strategies for learning vector quantization. In: Verleysen...
Dit proefschrift geeft een systematische analyse van op divergentie gebaseerde leer algoritmen en le...
Biehl M, Ghosh A, Hammer B. Learning vector quantization: The dynamics of winner-takes-all algorithm...
Villmann T, Haase S, Schleif F-M, Hammer B. Divergence Based Online Learning in Vector Quantization....
Mwebaze E, Schneider P, Schleif F-M, et al. Divergence based classification in Learning Vector Quant...
Villmann T, Haase S, Schleif F-M, Hammer B, Biehl M. The Mathematics of Divergence Based Online Lear...
We discuss the use of divergences in dissimilarity-based classification. Divergences can be employed...
We propose the utilization of divergences in gradient descent learning of supervised and unsupervise...
Schleif F-M, Villmann T. Neural Maps and Learning Vector Quantization - Theory and Applications. In:...
Biehl M, Gosh A, Hammer B. The dynamics of Learning Vector Quantization. In: Verleysen M, ed. ESANN'...
Hammer B, Hofmann D, Schleif F-M, Zhu X. Learning vector quantization for (dis-)similarities. NeuroC...
Schneider P, Biehl M, Hammer B. Distance learning in discriminative vector quantization. Neural Comp...
We propose relevance learning for unsupervised online vector quantization algorithm based on stochas...
Learning vector quantization (LVQ) is one of the most powerful approaches for prototype based classi...
Brinkrolf J, Hammer B. Federated Learning Vector Quantization. In: Verleysen M, ed. Proceedings of t...
Fischer L, Hammer B, Wersing H. Rejection strategies for learning vector quantization. In: Verleysen...
Dit proefschrift geeft een systematische analyse van op divergentie gebaseerde leer algoritmen en le...
Biehl M, Ghosh A, Hammer B. Learning vector quantization: The dynamics of winner-takes-all algorithm...
Villmann T, Haase S, Schleif F-M, Hammer B. Divergence Based Online Learning in Vector Quantization....
Mwebaze E, Schneider P, Schleif F-M, et al. Divergence based classification in Learning Vector Quant...
Villmann T, Haase S, Schleif F-M, Hammer B, Biehl M. The Mathematics of Divergence Based Online Lear...
We discuss the use of divergences in dissimilarity-based classification. Divergences can be employed...
We propose the utilization of divergences in gradient descent learning of supervised and unsupervise...
Schleif F-M, Villmann T. Neural Maps and Learning Vector Quantization - Theory and Applications. In:...
Biehl M, Gosh A, Hammer B. The dynamics of Learning Vector Quantization. In: Verleysen M, ed. ESANN'...
Hammer B, Hofmann D, Schleif F-M, Zhu X. Learning vector quantization for (dis-)similarities. NeuroC...
Schneider P, Biehl M, Hammer B. Distance learning in discriminative vector quantization. Neural Comp...
We propose relevance learning for unsupervised online vector quantization algorithm based on stochas...
Learning vector quantization (LVQ) is one of the most powerful approaches for prototype based classi...
Brinkrolf J, Hammer B. Federated Learning Vector Quantization. In: Verleysen M, ed. Proceedings of t...
Fischer L, Hammer B, Wersing H. Rejection strategies for learning vector quantization. In: Verleysen...
Dit proefschrift geeft een systematische analyse van op divergentie gebaseerde leer algoritmen en le...
Biehl M, Ghosh A, Hammer B. Learning vector quantization: The dynamics of winner-takes-all algorithm...