There are several topics of Clifford algebra where discrete and continuous worlds are deeply intertwined, one for all the Cartan theorem that expresses continuous automorphisms by a succession of reflections, but they thrive separately an do not fit in a comprehensive picture. We will focus on some cases where Clifford algebra manifestly shows discrete features with the hope that shedding light on some details may help a more complete scenario to come out of darkness. In particular we will tackle two themes: the first is the ubiquitous role played by the base two expansion of integers in Clifford algebra: for example the interplay between the signature of the vector space and the 'spinorial chessboard' or the determination of row and column...