Structured catalysts have been proposed as a suitable solution for the efficient management of strongly exo- and endothermic processes. Among these structures, open-cell foams are considered as one of the most promising candidates as catalyst supports. In this work, we investigated the heat transfer in the solid matrix of open-cell foams by means of 3D numerical simulations carried out on virtually reconstructed structures. The totally interconnected solid matrix promotes high heat transfer rates because the conduction in the solid matrix is the main contribution to the heat transport. Our analysis reveals that the void fraction is the controlling parameter for the performances of the structures. An engineering correlation for the effective...